
Predicting delays in software projects using
networked classification

Morakot Choetkiertikul∗, Hoa Khanh Dam∗, Truyen Tran† and Aditya Ghose∗
∗School of Computing and Information Technology

University of Wollongong, Australia
Email: {mc650,hoa,aditya}@uow.edu.au
†School of Information Technology

Deakin University, Australia
Email: truyen.tran@deakin.edu.au

Abstract—Software projects have a high risk of cost and sched-
ule overruns, which has been a source of concern for the software
engineering community for a long time. One of the challenges
in software project management is to make reliable prediction
of delays in the context of constant and rapid changes inherent
in software projects. This paper presents a novel approach to
providing automated support for project managers and other
decision makers in predicting whether a subset of software
tasks (among the hundreds to thousands of ongoing tasks) in
a software project have a risk of being delayed. Our approach
makes use of not only features specific to individual software
tasks (i.e. local data) – as done in previous work – but also their
relationships (i.e. networked data). In addition, using collective
classification, our approach can simultaneously predict the degree
of delay for a group of related tasks. Our evaluation results show
a significant improvement over traditional approaches which
perform classification on each task independently: achieving
46%–97% precision (49% improved), 46%–97% recall (28%
improved), 56%–75% F-measure (39% improved), and 78%–
95% Area Under the ROC Curve (16% improved).

I. INTRODUCTION

Delays constitute a major problem in software projects
[1]. Approximately one-third of IT projects went over the
scheduled time, according to a recent study by Mckinsey
and the University of Oxford in 2012 on 5,400 large scale
IT projects [2]. In the Standish Group’s well-known CHAOS
report [3], the proportion of delayed projects recorded were
even higher – at 82%. These studies have also shown that
ineffective risk management is one of the main reasons for the
high rate of overrun software projects. An important aspect of
risk management is the ability to predict, at any given stage in
a project, which tasks (among hundreds to thousands tasks) are
at risk of being delayed. Foreseeing such risks allows project
managers to take prudent measures to assess and manage the
risks, and consequently reduce the chance of their project
being delayed.

Making a reliable prediction of delays is therefore an
important capability for project managers, especially when
facing with the inherent dynamic nature of software projects
(e.g. constant changes to software requirements). Current
practices in software risk management however rely mostly
on high-level, generic guidance (e.g. Boehm’s “top 10 list of
software risk items” [4] or SEI’s risk management framework

[5]) or highly subjective expert judgements. Thus, there is a
strong need for providing automated, contextual support for
identifying risks of delay in software projects.

In order to address that need, a number of recent proposals
have leveraged data mining and machine learning technologies
to predict delays in resolving software issues (e.g. [6]) or to
estimate the fix time of a software bug (e.g. [7–11]). In line
with a large body of work in data mining for software engi-
neering, these approaches employ traditional machine learning
classification techniques to perform classification on each issue
or bug independently using its attributes or features. Such
approaches do not take into account the role of the underlying
network of inter-relationships between the tasks of resolving
those bugs or issues. This is a gap, given the preponderance of
task dependencies in software projects – approximately 57%
of 11,851 tasks in the five open source projects selected for
our study were related to at least one other task. These task
dependencies form the networked data that we will seek to
leverage in this work.

Networked data are seen in many different forms in our
daily life, such as hyperlinked Web pages, social networks,
communication networks, biological networks and financial
transaction networks. They are used in various applications
such as classifying Web pages [12], scientific research papers
[13, 14], protein interaction and gene expression data [15].
We demonstrate that a similar class of networked data (i.e.
networked tasks) can also provide valuable information for
predicting delays in software projects. For example, if a
task blocks another task and the former is delayed, then
the latter is also at risk of getting delayed. This example
demonstrates a common delay propagation phenomenon in
(software) projects, which has not been considered by previous
approaches.

We propose a novel approach to leverage task dependencies
for predicting delays in software projects. This paper makes
two main contributions:
• A technique for constructing a task network of soft-

ware development tasks
This technique enabled us to extract various relationships
between tasks in software projects to build a task network.
Task relationships can be explicit (those that are explicitly

specified in the task records) or implicit (those that need
to be inferred from other task information). Explicit rela-
tions usually determine the order of tasks, while implicit
relations reflect other aspects such as tasks assigned to
the same developer, tasks affecting the same software
component or similar tasks.

• Predictive models to predict delays in software
projects.
We developed accurate predictive models that can predict
whether a software task is at risk of getting delayed. Our
predictive models have three components: local classifier,
relational classifier and collective inference. The local
classifier uses 15 non-relational (i.e. local) features of a
software task: discussion time, waiting time, task type,
number of repetition tasks, percentage of delayed tasks
that a developer involved with, developer’s workload,
task priority, number of comments, changing of priority,
number of fix version, number of affect version, changing
of description, number of votes, number of watches
and reporter reputation. The relational classifier makes
use of the task relations in a task network to predict
if a task gets delayed based on the delay information
of its neighbors. Finally, collective inference allows us
to make such a prediction simultaneously for multiple
related tasks. The performance of our predictive models
were evaluated on five different open source projects.
We achieved 46%-97% precision, 46%-97% recall, 56%-
75% F-measure, and 78%-95% Area Under the ROC
Curve. The evaluation results compared to the traditional
approaches using only local classifiers show a significant
improvement: it improves 49% precision, 28% recall,
39% F-measure, and 16% Area Under the ROC Curve
over the traditional approaches.

The remainder of this paper is organized as follows. Section
II describes a motivating example and Section III provides
an overview of our approach. Section IV serves to describe
how a task network is built for a software project. Section V
presents our networked predictive models. Section VI reports
the experimental evaluations of our approach. Threats to
validity of our study are discussed in Section VII. Related
work is discussed in Section VIII before we conclude and
outline future work in Section IX.

II. MOTIVATING EXAMPLE

Typically, a (software) project requires a number of activi-
ties or tasks be completed. Each task usually has an estimated
due date. It is important for project managers to ensure as
many tasks be completed in time (i.e. by their respective due
date) as possible since this has implications to the overall
progress of a project (e.g. releasing a major version on a
specified date). However, in practice project will never execute
exactly as it was planned due to uncertainty. For example,
Figure 1 shows seven tasks (represented by their ID) extracted
from the JBoss1 project, only two of which (i.e. tasks JBIDE-

1http://www.jboss.org

1469 and JBAS-14) were completed on time whilst there were
three delayed tasks (i.e. JBAS-15, JBWS-52 and JBOP-1). One
of the main challenges in project management is therefore
predicting which tasks have a risk of being delayed, giving
the current situation of a project, in order to come up with
measures to reduce or mitigate such a risk. In this example,
assume that we are trying to predict if tasks JBAS-13 and
JBAS-7 will be delayed.

JBIDE-1469

JBAS-13

JBOP-1JBAS-15

JBAS-14

JBWS-52

blocks

Delayed task

Non-delayed task

JBAS-7
?

? Existing task

?

Fig. 1: An example of task dependencies in the JBoss project

Recent work [6] has proposed 16 risk factors contributing to
the delay of a software task completion. Those factors reflect a
range of attributes associated with a software task (which are
referred to as local features) such as task type, task priority, the
workload of developers assigned to the task, and so on. Based
on these risk factors, predict models were built to predict if
a task will be delayed. Like many tradition machine learning
methods in software engineering, the work in [6] has treated
tasks as being independent, which makes it possible to predict
delay risks on a task-by-task basis. For example, using the 16
local features, the approach in [6] predicted that tasks JBAS-13
would not be delayed.

In most cases, the tasks in a project are however related
to each other, and the delay status (e.g. major delayed, minor
delayed or non-delayed) of one task may have an influence
on that of its related task. For example, there are several
“blocking” relationships between the seven JBoss tasks in
Figure 1, e.g. task JBIDE-1469 blocks JBAS-15, indicating
that the former needs to be finished before the completion
of the latter. The task dependencies form the networked data
which contain interconnected tasks. Networked data provides
additional, valuable information which can be used to improve
the predictive performance of techniques solely relying local
features. For example, the local features are not sufficiently
to provide accurate prediction for task JBAS-13 – it was
predicted as non-delayed but it is in fact a delayed task. On
the other hand, by examining its relationships with other tasks
whose delay status are known – JBAS-13 were blocked by 3
delayed tasks and 1 non-delayed task (see Figure 1) – we may
be able to infer the risk of task JBAS-13 being delayed.

This example motivates the use of networked data to make
within-network estimation: tasks for which delay status (e.g.
delayed or non-delayed) is known are linked to tasks for which
the delay status must be predicted. Here, the data has an

important characteristics: tasks with known delay status are
useful in two aspects. They serves not only as training data
but also as background knowledge for the inference process.
Hence, the traditional separation of data into training and test
sets need to carefully take this important property into account.
In addition, networked tasks support collective classification,
i.e. the delay status of various related tasks can be predicted
simultaneously. For example, the prediction of task JBAS-13
can be used to influence the estimation of task JBAS-7 as they
are linked, thus we should do both predictions at the same
time.

This example only demonstrates links that are explicitly
specified in the tasks’ record. In practice, there are many
instances where tasks are related implicitly, e.g. assigned to the
same software engineers, affecting the same software compo-
nent, or similar to each other. Our approach is able to extract
different types of explicit and implicit task relationships, and
uses them for delay prediction.

III. OVERVIEW OF OUR APPROACH

Our approach leverages classification techniques in machine
learning to predict the riskiness of a task being delayed. A
given task is classified into one of the classes in {c1, c2, ..., ck}
where each class ci represents the risk impact in terms of
the degree of delay, e.g. major delayed, minor delayed or
non-delayed. Historical (i.e. completed) tasks are labeled, i.e.
assigned to a class membership, based on examining the
difference between their actual completion date and due date.
For example, in our studies tasks completed by their due date
are labeled as “non-delayed”, whilst tasks finished more than
60 days after their due date are labeled as “major delayed”.

The basic process of our approach is described in Figure 2.
The process has two main phases: the learning phase and the
execution phase. The learning phase involves using historical
data from past tasks to train classifiers, which are then used
for classify new tasks in the execution phase.

Our approach extracts data associated with software tasks
to build a task network which is defined as below.

Definition 1 (Task network). A task network is a directed
graph G = (V, E) where:
• each vertex v ∈ V representing a software task in the

form of 〈ID, c, attrs〉 where ID is a unique identifier of
the task, c is the risk class, i.e. label (e.g. non-delayed,
minor delayed or major delayed), which the task belongs
to, and attrs is a set of the task’s attribute-value pairs
(attri, vali) (i.e. local features).

• each edge e ∈ E representing a link between tasks u and
v in the form of 〈〈u, v〉, types, weights〉 where types is
set of the link’s type and weigths is set of link’s weight.

The set of tasks (or nodes) V in a task network is further
divided into two disjoint groups: tasks with known class labels,
V K , and tasks whose labels need to be estimated (unknown
class), V U which V U = V \ V K . Labeled tasks are used for
training, and also serve as background knowledge for inferring
the label of tasks in V U .

TABLE I: Local features of a software task

Feature Short description

Discussion time The period that a team spends on finding
solutions to solve a task

Waiting time The time when a task is waiting for being
acted upon

Type Task type
Task repetition The number of times that an task is re-

opened
Priority Task priority
Changing of priority The number of times a task’s priority was

changed
No. comments The number of comments from developers

during the discussion time
No. fix versions The number of versions for which a task

was or will be fixed
No. affect versions The number of versions for which a task has

been found
Changing of description The number of times in which the task

description was changed
Reporter reputation The measurement of the reporter reputation
Developer’s workload The number of opened tasks that have been

assigned to a developer at a time
Per. of delayed tasks The percentage of delayed tasks in all of

the tasks which have been assigned to a
developer

Number of votes The number of developers who voted a task
Number of watches The number of developers who watch a task

A set of attributes (attrs) for a task are also extracted (see
Table I). These features represents the local information of
each individual task in the network. The local features are
used to build a local classifier which treats tasks independently
from each other. Traditional state-of-the-art classifiers (e.g.
Random Forest [16], Multiclass Support Vector Machines [17],
or Multiclass Logistic Regression [18]) can be employed for
this purpose.

The second important component in our approach is the
relational classifier. Unlike the local classifier, the relational
classifier makes use of the relations between tasks in the
network (represented by edges) to estimate a task’s label using
the labels of its neighbors. Relational classifier models exploit
a phenomenon that is widely seen in relational data: the label
of a node is influenced by the labels of its related nodes.
Relational classifier models may also use local attributes of
the tasks. Links between tasks in the network are established
by extracting both explicit and implicit relations. Explicit
relations refer to the task dependencies explicitly set by the
developers (e.g. the block dependency). On the other hand,
implicit relations can be inferred from the resources assigned
to the tasks (e.g. assigned to the same developer) or the nature
of the tasks. We will discuss these types of task relations in
details in the next section. Each type of relationship can be
assigned to a weight which quantitatively reflects the strength
of the relationship.

Another novel aspect of our approach is the collective
inference component which simultaneously classifies a set of
related tasks. Details of these approaches will be provided in
Section V.

Learning phase Execution phase

Archive of
past tasks

Identifying delay
status of tasks

Extracting
local features

Constructing
task network

Building
relational
classifier

Trained
relational
classifier

Building
local classifier

Labelled
tasks

Predicted delay
status of tasks

Trained
local classifier

Collective inference

Existing tasks

Extracting
local features

Task links

Fig. 2: An overview of our approach

IV. TASK NETWORK CONSTRUCTION

An important part of our approach is building a task network
for past and current tasks. In most of modern task tracking
system (e.g. JIRA), some dependencies between tasks are
explicit recorded (i.e. in a special field) in the task reports
and can be easily extracted from there. We refer to these
dependencies as explicit relationships. There are however other
types of task dependency that are not explicitly recorded (e.g.
tasks assigned to the same developer), and we need to infer
them from extracting other information of the tasks. These
are referred to as implicit relationships. We now discuss these
types of relationships in details.

1) Explicit relationships: There are a number of depen-
dencies among tasks which are explicitly specified in the task
records. These typically determine the order in which tasks
need to be performed. There are generally four different types
of relationships of the preceding tasks to the succeeding tasks:
finish to start (predecessor must finish before successor can
start), start to start (predecessor must start before successor can
start), finish to finish (predecessor must finish before successor
can finish), and start to finish (predecessor must start before
successor can finish). For example, blocking is a common type
of relationships that is explicitly recorded in issue/bug tracking
systems. Blocking tasks are software tasks that prevent other
tasks from being resolved, which could fall into the finish to
start or finish to finish category.

Figure 3 shows some explicit relationships between tasks
in the JBoss project, which uses the JIRA task tracking
system. For example, JBIDE-788 blocks JBIDE-1469, which
is represented by a directed edge connected the two nodes. In
addition to blocking, JIRA also provides three other default
types of task links: relates to, clones and duplicates. Figure
3 shows some examples of the “relates to” relationship, e.g.
task JBIDE-788 relates to JBIDE-1547.

2) Implicit relationships: While explicit relationships are
specified directly in the task reports, implicit relationship
need to be inferred from other task information. There are

JBIDE-1469

(a.) Explicit network topology

(b.) Implicit network topology

(c.) Combined network topology

JBIDE-788
JBIDE-1329

JBIDE-1769

JBIDE-1457

JBIDE-6217

JBIDE-1636

JBIDE-1547

JBIDE-351

JBIDE-1498blocks

relates

relates

JBIDE-788

JBIDE-1492

JBIDE-1694

JBIDE-1694
rep

JBIDE-1492

JBIDE-1717

JBIDE-799

ver
dev = same developer
rep = same reporter
com = same component
fix = same fix version
ver = same affect version

JBIDE-788

JBIDE-1469

JBIDE-1329

JBIDE-1547

JBIDE-1694

JBIDE-1694

JBIDE-799

relates

ver

fix

Fig. 3: Example of explicit task relationships in JBoss

JBIDE-1469

(a.) Explicit network topology

(b.) Implicit network topology

(c.) Combined network topology

JBIDE-788
JBIDE-1329

JBIDE-1769

JBIDE-1457

JBIDE-6217

JBIDE-1636

JBIDE-1547

JBIDE-351

JBIDE-1498blocks

relates

relates

JBIDE-788

JBIDE-1492

JBIDE-1694

JBIDE-1694
rep

JBIDE-1492

JBIDE-1717

JBIDE-799

ver

dev = same developer
rep = same reporter
com = same component
fix = same fix version
ver = same affect version
top = same topic

JBIDE-788

JBIDE-1469

JBIDE-1329

JBIDE-1547

JBIDE-1694

JBIDE-1694

JBIDE-799

relates

ver

fix

JBDS-655

Fig. 4: Example of implicit task relationships in JBoss

different task information that can be extracted to identify a
(implicit) relationship between tasks. We classified them into
three groups as described below.

• Resource-based relationship: this type of relationships
exists between tasks that share the same (human) re-
source. The resource here could be the developers as-
signed to perform the tasks or the same person who
created and reported the tasks. For example, from Figure
4, JBIDE-788 has a relationship with JBIDE-1694 since
both of them are assigned to the same developer. Task
JBIDE-788 is also related to JBIDE-1694 since they were
reported by the same person.

• Attribute-based relationship: tasks can be related if some
of their attributes share the same values. For example,

there is a relationship between tasks performed on the
same component. For tasks recorded in JIRA, we extract
this type of relationship by examining three attributes:
affect version, fix version and component. For example,
JBIDE-788 and JBIDE-799 affects the same version
while JBIDE-1694 and JBIDE-1717 affects the same
component as shown in Figure 4.

• Content-based relationship: tasks can be similar in terms
of how they are conducted and/or what they affect. The
similarity may form an implicit relationship between
tasks which can be established by extracting the de-
scription of the tasks. Different extraction techniques
can be applied here, ranging from traditional information
retrieval techniques to recent NLP techniques like topic
modeling. We use Latent Dirichlet Allocation [19] to
build a topic model representing the content of a software
task. We then establish relationships between on the
basis that related tasks share a significant number of
common topics. Figure 4 shows some example of content-
based relationships in JBoss, e.g. task JBIDE-788 has
the same topic with JBDS-655. The common topics
shared between these two tasks are “code, access control
exception, and document types”.

A task network is built by extracting both explicit and
implicit links among the tasks. We employ a number of
measures to describe different properties of a task network:
the number of nodes, the number of edges, and the average
node degree (i.e. the number of connections a node has to
other nodes). In addition, assortativity coefficient is used to
measure the correlation between two nodes: the preference of
network nodes to connect to other nodes that have similar
or different degree. Positive values of assortativity coefficient
indicate a correlation between nodes of similar degree (e.g.
highly connected nodes tends to be connected with other high
degree nodes), while negative values indicate relationships
between nodes of different degree (e.g. high degree nodes tend
to connect to low degree nodes). As can be seen from Table
II, the inclusion of implicit relationships significantly increases
the density of the network tasks across all the five projects that
we studied. By contrast, the assortativity coefficient remains
nearly the same with or without implicit relationships.

A weight is also applied to each edge type in a task network.
This allows us to better quantify the strength of a relationship
between tasks. By default, each edge is equally assigned the
weight of 1. However, different weights can also be applied
to different types of relationships. More complex approaches
can also be applied here. For example, the weights could be
decreased over time to reflect the fading of the relationships,
e.g. the tasks have been assigned to the same developer for
long time ago.

V. PREDICTIVE MODELS

Our predictive models are built upon three components:
local classifier (as done in previous work), relational classifier,
and collective inference. Local classifiers treat tasks as being
independent, making it possible to estimate class membership

TABLE II: Datasets and networks’ statistics

Project Relationship Num
Nodes

Num
Edges

Avg. node
degree

Node
Assort.

Apache Explicit 496 246 1.597 0.256
Implicit 496 27,460 55.362 0.246
All 496 27,706 55.858 0.225

Duraspace Explicit 1,116 563 1.700 0.257
Implicit 1,116 383,677 343.796 0.240
All 1,116 384,240 344.301 0.230

JBoss Explicit 8,206 4,904 2.057 0.235
Implicit 8,206 4,908,164 598.118 0.249
All 8,206 4,913,068 598.716 0.247

Moodle Explicit 1,439 1,283 3.055 0.222
Implicit 1,439 197,176 137.022 0.215
All 1,439 198,748 138.115 0.208

Spring Explicit 597 222 1.219 0.250
Implicit 597 63,430 106.247 0.249
All 597 63,652 106.619 0.242

on a task-by-task basis. Relational classifiers posit that the
class membership of one task may have an influence on the
class membership of a related task in the network. Collective
inference infers the class membership of all tasks simultane-
ously [20]. In the following we discuss the details of each
components.

A. Local (non-relational) classifier

There are several available state-of-the-art algorithms and
techniques that we could employ to develop local classifiers.
We employ the state-of-the-art classifier which is Random
Forest (RF) [16] – the best performing technique in our
experiments.

B. Relational classifier

Relational classifiers make use of information about related
tasks to estimate the label probability. For simplicity, we use
only direct relations for class probability estimation:

P (c | G) = P (c | Ni)

where Ni is a set of the immediate neighbors of task vi (i.e.
those that are directly related to vi) in the task network G,
such that P (c | Ni) is independent of G \Ni.

This is based on a theoretical property known as the Markov
assumption which states that given the neighborhood (also
known as the Markov blanket), it is sufficient to infer about the
current label without knowing the other labels in the network
[21].

For developing a relational classifier, we employ two highly
effective methods. One is Weighted-Vote Relational Neighbor
(wvRN) [22] which is one of the best relational classification
algorithms reported in [20]. The other is Stacked Graphical
Learning [23], where classifiers are built in a stage-wise
manner, making use of relational information in the previous
stage.

1) Weighted-Vote Relational Neighbor: Weighted-Vote
Relational Neighbor (wvRN) estimates class membership
probabilities based on two assumption [24]. First, the label
of a node depends only on its immediate neighbors. Second,
wvRN relies on the principle of homophily which assumes
that neighboring class labels were likely to be the same [25].
Thus, wvRN estimates P (c|vi) as the (weighted) mean of the
class membership of the tasks in the neighborhood (Ni):

P (c | vi) =
1

Z

∑
vj∈Ni

w(vi, vj)P (c | Nj)

where Z =
∑

vj∈Ni
w(vi, vj) and w(vi, vj) is the weight

of the link between task vi and task vj . Our experiments
applied the same weight of 1 to all relationship types, i.e.
w(vi, vj) = 1. The optimized weights could be determined
using the properties of a network topology such as assortativity
coefficient [20, 26, 27]). We denote the prior class probability
distributions from a relational classification as MR.

2) Stacked Graphical Learning: One inherent difficulty of
the weighted-voting method is the computation of the neighbor
weights. Since there are multiple relations, estimating the
weights are non-trivial. Stacked learning offers an alternative
way to incorporate relational information.

The idea of stacking is to learn joint models by multiple
steps, taking into relational information of the previous step to
improve the current step. At each step, relational information
together with local features are fed into a standard classifier
(e.g., Random Forests). We consider relations separately and
the contribution of each relation is learnt by the classifier
through the relational features. The classifier is then trained. Its
prediction on all data points (vertices in the network) will be
then used as features of the next stage. We adapt the idea from
[23]. Our contribution is in the novel use of Random Forests as
a strong local classifier rather than linear classifiers as used in
[23].The stacked learning algorithm is described in Algorithm
1. It returns T classifiers for T steps. At the first step, the local
classifier is used. At subsequent steps, relational classifiers are
trained on both local features and relation-specific averaged
neighbor probabilities.

C. Collective inference
Collective inference is the process of inferring class proba-

bilities simultaneously for all unknown labels in the network
conditioned on the seen labels. We employ two methods:
Relaxation Labeling (RL) [28] and Stacked Inference (SI).
RL is applicable to any non-stagewise relational classifiers
(e.g. wvRN described in Section V-B1). It has been found
to achieve good performance in [20]. SI, on the other hand, is
specific to stacked classifiers (e.g., see Section V-B2).

1) Relaxation Labeling: Relaxation Labeling (RL) has
been shown to achieve good results in [20]. RL initializes the
class probabilities using the local classifier model. RL then
iteratively corrects this initial assignment if the neighboring
tasks have labels that are unlikely according to the prior class
distribution estimated by MR (see Section V-B1). Algorithm
2 describes the Relaxation Labeling technique.

2) Stacked Inference: Following the stacked learning al-
gorithm in Section V-B2, stacked inference is described in
Algorithm 3. It involved T classifiers returned by the stack
learning algorithm. At the first step, the local classifier is
used to compute the class probabilities. At T − 1 subsequent
steps, relational classifiers receives both the local features and
relation-specific weighted neighbor probabilities and outputs
class probabilities. The final class probabilities are the outcome
of the inference process.

VI. EVALUATION

Tasks were collected from the JIRA task tracking system
in five well-known open source projects: Apache, Duraspace,
JBoss, Moodle, and Spring (see Table II), and divided into a
training set and a test set. We try to mimic a real project
management scenario that prediction on a current task is
made using knowledge from the past tasks, the collected
tasks in training set are those that were opened before the
tasks in test set. The collected datasets are shown in Ta-
ble II. We have made our datasets publicly available at:
http://www.uow.edu.au/∼mc650/. Since the number of delayed
tasks in our datasets is small, we chose to use two classes of
delay: major delayed and minor delayed (and the non-delayed
class).

Table III shows the number of tasks in training set and test
set for each project. Since (major/minor) delayed tasks are rare
and imbalanced, we had to be careful in creating the training
and test sets. Specifically, we placed 60% of the delayed tasks
into the training set and the remaining 40% into the test set. In
addition, we tried to maintain a similar ratio between delayed
and non-delayed tasks in both test set and training set, i.e.
stratified sampling.

TABLE III: Experimental setting

Project Training set Test set

Major Minor Non Major Minor Non

Apache 10 52 236 6 34 158
Duraspace 23 71 575 16 47 384
JBoss 666 679 3,579 444 452 2,386
Moodle 42 52 770 28 34 513
Spring 13 34 310 8 22 207

A. Performance Measure

Reporting the average of precision/recall across classes is
likely to overestimate the true performance, since our risk
classes are ordinal and imbalanced and no-delays are the
default and they are not of interest to the prediction of delayed
tasks. Hence, our evaluation is focus on the predicting of risk
classes as described below.

A confusion matrix is used to evaluate the performance
of our predictive models. As a confusion matrix does not
deal with a multi-class probabilistic classification, we reduce
the classified tasks into two binary classes: delayed and non-
delayed using the following rule:

Algorithm 1 The stacked learning algorithm (adapted from [23])

1: Train of the 1-st local classifiers on training nodes, ignoring relations
2: for step t=2,3,..,T do
3: Compute the class probabilities for all data points using the (t-1)th classifier
4: for each node i do
5: for each relation r that this node has with its neighbor do
6: if relation weight exist then
7: Average all probabilities of its neighbors j who have the relation r with relation weight
8: else
9: Set relation weight to 1

10: Average all probabilities of its neighbors j who have the relation r
11: end if
12: Prepare k − 1 features using these averaged probabilities (k probabilities sum to 1)
13: end for
14: Concatenate all relational features together with the original features
15: end for
16: Train the t-th local classifier on training nodes and new feature sets.
17: end for
18: Output T classifiers (one local, T-1 relational)

Algorithm 2 The Relaxation Labeling algorithm (adapted from [24])

1: Use the 1-st classifier to predict the class probabilities using only local features
2: for step t=2,3,..,T do
3: Estimate the prior class probabilities using the relational classifier, MR, on the current state of network
4: Reassign the class of each vi ∈ V U according to the current class probabilities estimation
5: end for
6: Output the class probabilities of vertices with unknown labels.

Algorithm 3 The stacked inference algorithm

1: Use the 1-st classifier to predict the class probabilities using only local features
2: for step t=2,3,..,T do
3: Prepare relational features using the neighbor probabilities computed from the previous step
4: Use the t-th classifiers to predict the class probabilities using local features and relational features.
5: end for
6: Output the class probabilities of vertices with unknown labels.

Ci =

{
delayed, ifP (i,Maj) + P (i,Min) > P (i,Non)

non− delayed, otherwise

where Ci is the binary classification of task i, and
P (i,Maj), P (i,Min), and P (i,Non) are the probabilities of
task i classified in the major delayed, minor delayed, and non-
delayed classes respectively. Basically, this rule determines
that a task is considered as delayed if the sum probability
of it being classified into the major and minor delayed classes
is greater than the probability of it being classified into the
non-delayed class.

The confusion matrix is then used to store the correct
and incorrect decisions made by a classifier. For example,
if a task is classified as delayed when it truly caused a
delay, the classification is a true positive (tp). If the task is
classified as delayed when actually it did not cause a delay,
then the classification is a false positive (fp). If the task is

classified as non-delayed when it in fact caused a delay, then
the classification is a false negative (fn). Finally, if the task
is classified as non-delayed and it in fact did not cause a
delay, then the classification is true negative (tn). The values
stored in the confusion matrix are used to compute the widely-
used Precision, Recall, and F-meature for the delayed tasks to
evaluate the performance of the predictive models:

• Precision: The ratio of correctly predicted delayed task
over all the tasks predicted as delayed task. It is calculated
as:

pr =
tp

tp+ fp

• Recall: The ratio of correctly predicted delayed task over
all of the actually task delay. It is calculated as:

re =
tp

tp+ fn

0

0.2

0.4

0.6

0.8

1

Traditional wvRN+RL Stacked learning

P
re

ci
si

o
n

0

0.2

0.4

0.6

0.8

1

Traditional wvRN+RL Stacked learning

R
e
ca

ll

0

0.2

0.4

0.6

0.8

1

Traditional wvRN+RL Stacked learning

F
-m

e
a
su

re

0

0.2

0.4

0.6

0.8

1

Traditional wvRN+RL Stacked learning

A
U

C

(a.) Precision (b.) Recall

(c.) F-measure (d.) AUC

00.10.20.30.40.50.60.70.80.91

F
-m

e
a
su

re

Apache Duraspace JBoss Moodle Spring

Fig. 5: Evaluation results of traditional classification, wvRN+RL, and stacked learning

• F-measure: Measures the weighted harmonic mean of the
precision and recall. It is calculated as:

F −measure =
2 ∗ pr ∗ re
pr + re

• Area Under the ROC Curve (AUC) is used to evaluate
the degree of discrimination achieved by the model.
The value of AUC is ranged from 0 to 1 and random
prediction has AUC of 0.5. The advantage of AUC is
that it is insensitive to decision threshold like precision
and recall. The higher AUC indicates a better prediction.

B. Results

Comparison of different classification approaches: We
compare three different settings: local classifier using Random
Forrests (traditional classification), Weighted-Vote Relational
Neighbor (wvRN) with Relaxation Labeling (RL), and stack-
ing method (with stacked inference). Figure 5 shows the pre-
cision, recall, F-measure, and AUC achieved by three different
classification approaches. The stacking method uses Random
Forests as the base classifier. The evaluation results indicate
that the predictive performance achieved by stacked learning
is better and more consistent than traditional classification
and relational classification using wvRN+RL. As can be seen
in Figure 5(a.), stacked learning achieved the best precision
of 0.65 (averaging across five projects), while the traditional
classification achieved only 0.39 precision (averaging across
five projects). It should however be noted that wvRN+RL
achieved the highest precision of 0.97 for Duraspace. In
addition, the precision achieved by stacked learning is more
consistent and steady in all projects. By contrast, the perfor-
mance of wvRN+RL are varied between projects. Relational
classification with wvRN+RL is based on the principle of
homophily, which may not always hold in some projects. This
is reflected by its low performance in some cases (i.e. only 0.45
precision for Apache). On the other hand, stacked learning
provides a more generalized approach to learn the relationships

within networked data – it achieved above 0.5 precision across
the five projects.

Stacked learning also outperforms the other classification
approaches in terms of recall and F-measure: it achieved the
highest recall of 0.83 and the highest F-measure of 0.71
(averaging across five projects) as can be seen in in Figure
5(b.) and 5(c.). The highest recall of 0.97 was also achieved
by stack learning for the Spring project.

The degree of discrimination achieved by our predictive
models is also high, as reflected in the AUC results. The AUC
quantifies the overall ability of the discrimination between the
delayed and non-delayed classes. As can be seen in Figure
5(d.), the average of AUC across all classifiers and across all
projects is 0.83. All classifiers achieved more than 0.65 AUC
while stacked learning is the best performer with 0.88 AUC
(averaging across five projects) and 0.95 for Duraspace.

Overall, the evaluation results demonstrate the effectiveness
of our predictive models, achieving on average 46%–97%
precision, 46%–97% recall, 56%–76% F-measure, and 78%–
95% Area Under the ROC Curve. Our evaluation results also
show a significant improvement over traditional approaches
(local classifiers): 49% improvement in precision, 28% in
recall, 39% in F-measure, and 16% in Area Under the ROC
Curve.

The usefulness of collective inference: The second aspect
of our evaluation focuses on evaluating the predictive perfor-
mance achieved by using collective inference. To do so, we
have setup two experiments: one using wvRN and the other
using both wvRN and RL. Figure 6 shows the comparison
of the precision, recall, F-measure, and AUC achieved by the
relational classification with collective inference (wvRN+RL)
and without collective inference (only wvRN). Overall, the
predictive performance achieved by relational classification
with collective inference is better than that without collective
inference in all measures. As can be seen in Figure 6, the
relational classification with collective inference achieves the
highest precision of 0.61, recall of 0.70, F-measure of 0.62,

0

0.2

0.4

0.6

0.8

1

Non CI With CI

P
re

ci
si

o
n

0

0.2

0.4

0.6

0.8

1

Non CI With CI

R
e
ca

ll

0

0.2

0.4

0.6

0.8

1

Non CI With CI

F
-m

e
a
su

re

0

0.2

0.4

0.6

0.8

1

Non CI With CI

A
U

C

(a.) Precision (b.) Recall

(c.) F-measure (d.) AUC

00.10.20.30.40.50.60.70.80.91

F
-m

e
a
su

re

Apache Duraspace JBoss Moodle Spring

Fig. 6: Evaluation results of relational classifier with collective inference and without collective

0

0.2

0.4

0.6

0.8

1

Precision Recall F-measure

Explicit

Explicit and Resource-based

Explicit and Attribute-based

Explicit and Content-based

All

Fig. 7: Evaluation results on different sets of relationships

and 0.82 AUC (averaging across five projects). Although, the
predictive performance of Relaxation Labeling is lower than
stacked learning as we discussed earlier, the evaluation results
still support that collective inference significantly improve
the performance of relational classifiers. However, collective
inference applied on top of the wvRN still follows a strong
assumption of homophily theory and as a result, it causes an
inconsistent predictive performance among different projects.

The influence of explicit and implicit relationships: We
have also performed a number of experiments to evaluate
the predictive performance achieved by different sets of re-
lationships. We have tested with five different combinations:
networks with explicit relationships, networks with explicit
and resource-based relationships, networks with explicit and
attribute-based relationships, networks explicit and content-
based relationships, and networks with all explicit and implicit
relationships. As can be seen from Figure 7, the highest
predictive performance is achieved by using both explicit and
implicit relationships: it achieved the highest precision of 0.62
and the highest recall of 0.70 (averaging across five projects).
By contrast, the networks using only explicit relationships
achieved the lowest precision, i.e. 0.31, while the networks
using explicit and content-based relationships produced the
lowest recall. In general, using both explicit relationships
and implicit relationships (resource-based, attribute-based, and
content-based) significantly increases the predictive perfor-

mance: 66.23 % increased in precision and 21.62 % increased
in recall (compare to using only explicit relationships).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20% 30% 40% 50% 60% 70% 80% 90% 100%

F
-M
e
a
su
re

Apache Duraspace JBoss

Moodle Spring avg

Fig. 8: Evaluation results on different sizes of training data

The effect of the size of training data: We have also
performed a number of experiments to assess the proportion
of past tasks (i.e. labeled tasks) is needed to achieve a good
predictive performance. Specifically, in these experiments,
given a data set, G = (V,E), V K (i.e. labeled tasks) is
created by selecting samples of 20% – 100% of the training
set (see Table III). The test set, V U , is then defined as V \V K .
Figure 8 shows the predictive performance from samples of
20% to 100% of V in terms of F-measure. The results clearly

demonstrate that F-measure (averaging across five projects)
increases as more labeled data is used for training.

VII. THREATS TO VALIDITY

One relational setting involves the use of wvRN, which
assumes the homophily property among tasks, that is, related
tasks should have similar delay risk. This is a strong assump-
tion and may not hold in reality, and this has been revealed in
our experiments. We have addressed this threat by proposing
stacked learning approach which does not rely on the the
homophily assumption but rather estimates the contribution
of separate relationships.

We have attempted to identify all possible relationships
among typical software tasks. However, we acknowledge that
the implicit relationships we have inferred are by no means
comprehensive to represent all task dependencies. Another
threat to our study is that our data set has the class imbalance
problem (over 90% of the total data are non-delayed tasks),
which may affect a classifier’s ability to learn to identify
delayed tasks. We have used stratified sampling to mitigate
this problem. In addition, patterns that hold in the train
data may not reflect the situation in the test, e.g. the team
and management having changed their approach or managed
the risks they perceived. To address this threat, instead of
splitting the data randomly (as done in traditional settings),
we deliberately chose the time to split training and test sets
to mimic a real deployment.

We have considered 11,851 task reports from the five
projects which differ significantly in size, complexity, devel-
opment process, and the size of community. Although these
are real data, we however cannot claim that our data set would
be representative of all kinds of software projects, especially
in commercial settings. Although open source projects and
commercial projects share similarities in many aspects, they
are also different in the nature of contributors, developers and
projects stakeholders. For example, open source contributors
are free to join and leave the communities (i.e. high turn over
rate), while developers in the commercial setting tend to be
stable and fully commit to deliver the projects progress. Hence,
further study is need to understand how our predict models
perform for commercial projects.

VIII. RELATED WORK

An automated risk prediction mainly supports software risk
management which is under the umbrella of project manage-
ment and crucial to the project success rate. Risk management
consists of two main activities: risk assessment and risk
control. Our current work focuses on risk assessment, which
is a process of identifying risks, analyzing and evaluating their
potential effects in order to prioritize them [4, 29]. Risk control
aims to develop, engage, and monitor risk mitigation plans
[30].

There are a number of works on applying statistical and
machine learning techniques to use in different aspects of risk
management. For example, Letier et al. [31] used a statistical
decision analysis approach to provide a statistical support

on complex requirements and architecture. The work in [32]
analyzed the correlation and causality of risk factors using
Bayesian network.

Our work also related to the works on predicting and
mining bug reports, for example, mining bug reports for fix-
time prediction (e.g. [7–11]), blocking bug prediction (e.g.
[33]), re-opened bug prediction (e.g. [34, 35]), severity/priority
prediction (e.g. [36, 37]), delays in the integration of a resolved
issue to a release (e.g. [38]), bug triaging (e.g. [39–42]),
and duplicate bug detection ([43–48]). Another groups of the
works on predicting is mining source code to predict software
defects, for example, mining change history (e.g. [49]), and
personalized defect prediction (e.g. [50])

Anothe thread of related work resides in the use of net-
worked data such as predicting software quality using social
network analysis (e.g. [51–54]), predicting software evolution
in terms of estimating bug severity, efforts, and defect-prone
releases using Graph-based analysis (e.g. [55]), and predicting
software defects using network analysis on dependency graphs
(e.g. [56]). Those approaches mostly work at the level of
source code and have not addressed delay prediction at the
task level as in our work.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel approach to predict
whether a number of existing tasks in a software project are at
risk of being delayed. Our approach exploits not only features
specific to individual tasks but also the relationships between
the tasks (i.e. networked data). We have developed several
prediction models using local classifiers, relational classifiers
and collective inference. The evaluation results demonstrate a
strong predictive performance of our networked classification
techniques compared to traditional approaches: achieving 49%
improvement in precision, 28% improvement in recall, 39%
improvement in F-measure, and 16% improvement in Area
Under the ROC Curve. In particular, the stacked graphical
learning approach consistently outperformed the other tech-
niques across the five projects we studied.

The results from our experiments indicate that the rela-
tionships between tasks have an impact on the predictive
performance. Hence, as part of future work, we will investigate
which types of task relationships should be selected to give
optimal results and how this can be done automatically for
software projects. A related future investigation would involve
applying different weights to different task relationships and
assessing their impact to the results. We also plan to investigate
if there are any other kinds of implicit relationships which
can be inferred from the task information and the general
context of a software project. Our future work would involve
expanding our study to commercial software projects and other
large open source projects to further assess our predictive
models. Finally, delay prediction which has been addressed
in this paper is just only the first part of the solution. The
next task is making actionable recommendations such as which
tasks having a risk of being delayed should be dealt with first,
and which measures could be used to mitigate the risks.

REFERENCES

[1] B. Flyvbjerg and A. Budzier, “Why Your IT Project May Be Riskier
Than You Think,” Harvard Business Review, vol. 89, no. 9, pp. 601–
603, 2011.

[2] B. Michael, S. Blumberg, and J. Laartz, “Delivering large-scale IT
projects on time, on budget, and on value,” 2012.

[3] S. Group, “Chaos report,” West Yarmouth, Massachusetts: Standish
Group, Tech. Rep., 2004.

[4] B. W. Boehm, “Software risk management: principles and practices,”
Software, IEEE, vol. 8, no. 1, pp. 32–41, 1991.

[5] M. J. Carr and S. L. Konda, “Taxonomy-Based Risk Identification,”
Software Engineering Institute, Carnegie Mellon University, Tech. Rep.
June, 1993.

[6] M. Choetkiertikul, H. K. Dam, T. Tran, and A. Ghose, “Characterization
and prediction of issue-related risks in software projects,” in Proceedings
of 12th Working Conference on Mining Software Repositories (MSR-
2015), 2015, p. To Appear.

[7] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How Long Will It
Take to Fix This Bug?” in Proceedings - ICSE 2007 Workshops: Fourth
International Workshop on Mining Software Repositories, MSR 2007.
IEEE, May 2007.

[8] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering - RSSE ’10. ACM Press, May 2010,
pp. 52–56.

[9] L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” in Fourth International
Workshop on Mining Software Repositories (MSR’07:ICSE Workshops
2007). IEEE, May 2007, pp. 29–29.

[10] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for bugs
in large open source projects,” in Proceedings of the 7th International
Conference on Predictive Models in Software Engineering - Promise
’11. New York, New York, USA: ACM Press, Sep. 2011, pp. 1–8.

[11] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models,” in
Proceeding of the 8th working conference on Mining software reposito-
ries - MSR ’11. New York, New York, USA: ACM Press, May 2011,
p. 207.

[12] J. Neville and D. Jensen, “Collective Classification with Relational
Dependency Networks,” in Proceedings of the Second International
Workshop on Multi-Relational Data Mining, 2003, pp. 77–91.

[13] B. Taskar, V. Chatalbashev, and D. Koller, “Learning Associative Markov
Networks,” Proc. of the International Conference on Machine Learning,
pp. 102–110, 2004.

[14] Q. Lu and L. Getoor, “Link-based classification,” in ICML, vol. 3, 2003,
pp. 496–503.

[15] E. Segal, R. Yelensky, and D. Koller, “Genome-wide discovery of
transcriptional modules from DNA sequence and gene expression,”
Bioinformatics, vol. 19, pp. 273–282, 2003.

[16] L. Breiman, “Random forests,” Machine learning, pp. 5–32, 2001.
[17] C. Science, R. Holloway, and L. Egham, “Support Vector Machines for

Multi-Class Pattern Recognition,” in European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning,
vol. 99, 1999, pp. 219–224.

[18] D. Böhning, “Multinomial logistic regression algorithm,” Annals of the
Institute of Statistical Mathematics, vol. 44, no. 1, pp. 197–200, 1992.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
Journal of Machine Learning Research, vol. 3, no. 4-5, pp. 993–1022,
2012.

[20] S. a. Macskassy and F. Provost, “Classification in Networked Data:
A toolkit and a univariate case study,” Journal of Machine Learning
Research, vol. 8, no. December 2004, pp. 1–41, 2005.

[21] S. L. Lauritzen, Graphical models. Oxford University Press, 1996.
[22] S. a. Macskassy and F. Provost, “A simple relational classifier,” Pro-

ceeding of the 2nd Workshop on Multi-Relational Data Mining (MRDM
03), pp. 64–76, 2003.

[23] Z. Kou and W. W. Cohen, “Stacked Graphical Models for Efficient
Inference in Markov Random Fields,” SIAM International Conference
on Data Mining, pp. 533–538, 2007.

[24] S. a. Macskassy, “Relational classifiers in a non-relational world: Using
homophily to create relations,” Proceedings - 10th International Con-
ference on Machine Learning and Applications, ICMLA 2011, vol. 1,
pp. 406–411, 2011.

[25] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a Feather:
Homophily in Social Networks,” Annual Review of Sociology, vol. 27,
no. 1, pp. 415–444, 2001.

[26] P. Vojtek and M. Bieliková, “Homophily of neighborhood in graph
relational classifier,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5901 LNCS, pp. 721–730, 2010.

[27] B. Golub and M. O. Jackson, “How homophily affects the speed of
learning and best-response dynamics,” Quarterly Journal of Economics,
vol. 127, no. 3, pp. 1287–1338, 2012.

[28] R. a. Hummel and S. W. Zucker, “On the foundations of relaxation
labeling processes.” IEEE transactions on pattern analysis and machine
intelligence, vol. 5, no. 3, pp. 267–287, 1983.

[29] Xu Ruzhi, Q. leqiu, and Jing Xinhai, “CMM-based software risk
control optimization,” in Proceedings Fifth IEEE Workshop on Mobile
Computing Systems and Applications. IEEE, 2003, pp. 499–503.

[30] M. Choetkiertikul and T. Sunetnanta, “A Risk Assessment Model
for Offshoring Using CMMI Quantitative Approach,” in 2010 Fifth
International Conference on Software Engineering Advances. IEEE,
Aug. 2010, pp. 331–336.

[31] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information
value in software requirements and architecture,” in Proceedings of the
36th International Conference on Software Engineering - ICSE 2014.
New York, New York, USA: ACM Press, May 2014, pp. 883–894.

[32] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu, “Software project risk
analysis using Bayesian networks with causality constraints,” Decision
Support Systems, vol. 56, pp. 439–449, Dec. 2013.

[33] H. Valdivia Garcia, E. Shihab, and H. V. Garcia, “Characterizing and
predicting blocking bugs in open source projects,” in Proceedings of the
11th Working Conference on Mining Software Repositories - MSR 2014.
ACM Press, May 2014, pp. 72–81.

[34] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Character-
izing and predicting which bugs get reopened,” in 34th International
Conference on Software Engineering (ICSE), 2012. IEEE Press, Jun.
2012, pp. 1074–1083.

[35] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto, “Studying re-opened bugs in open
source software,” Empirical Software Engineering, vol. 18, no. 5, pp.
1005–1042, Sep. 2012.

[36] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). IEEE, May 2010, pp. 1–10.

[37] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” 2008 IEEE International Conference on Software Main-
tenance, pp. 346–355, Sep. 2008.

[38] D. Alencar, S. L. Abebe, and S. Mcintosh, “An Empirical Study of
Delays in the Integration of Addressed Issues.”

[39] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceeding of the 28th international conference on Software engineering
- ICSE ’06. New York, New York, USA: ACM Press, May 2006, p.
361.

[40] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage,”
ACM Transactions on Software Engineering and Methodology, vol. 20,
no. 3, pp. 1–35, Aug. 2011.

[41] M. M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized assignment
of developers for fixing bugs an initial evaluation for eclipse projects,” in
2009 3rd International Symposium on Empirical Software Engineering
and Measurement. IEEE, Oct. 2009, pp. 439–442.

[42] G. Murphy and D. Čubranić, “Automatic bug triage using text catego-
rization,” in Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering, 2004.

[43] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of Duplicate
Defect Reports Using Natural Language Processing,” in 29th Interna-
tional Conference on Software Engineering (ICSE’07). IEEE, May
2007, pp. 499–510.

[44] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in Proceedings of the 30th international conference on
Software engineering, 2008, pp. 461–470.

[45] N. Bettenburg, R. Premraj, and T. Zimmermann, “Duplicate bug reports
considered harmful . . . really?” in 2008 IEEE International Conference
on Software Maintenance. IEEE, 2008, pp. 337–345.

[46] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” 2011 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2011), pp. 253–
262, Nov. 2011.

[47] N. Jalbert and W. Weimer, “Automated duplicate detection for bug track-
ing systems,” in 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN). IEEE, 2008, pp.
52–61.

[48] A. T. Nguyen, T. T. T. N. Nguyen, D. Lo, and C. Sun, “Duplicate bug
report detection with a combination of information retrieval and topic
modeling,” Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering - ASE 2012, p. 70, 2012.

[49] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” 2013 28th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2013 - Proceedings, pp. 268–
278, 2013.

[50] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” 2013
28th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2013 - Proceedings, pp. 279–289, 2013.

[51] N. Bettenburg and A. E. Hassan, “Studying the impact of dependency
network measures on software quality,” Empirical Software Engineering,
2012.

[52] T. Wolf, A. Schröter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,”
Proceedings - International Conference on Software Engineering, pp.
1–11, 2009.

[53] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures
with developer networks and social network analysis,” Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering - SIGSOFT ’08/FSE-16, p. 13, 2008.

[54] W. Hu and K. Wong, “Using citation influence to predict software
defects,” in 2013 10th Working Conference on Mining Software Repos-
itories (MSR). IEEE, May 2013, pp. 419–428.

[55] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based Analysis and Prediction for Software Evolution,” in Proceedings
of the 34th International Conference on Software Engineering (ICSE
2012), 2012, pp. 419–429.

[56] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 13th international
conference on Software engineering - ICSE ’08. New York, New York,
USA: ACM Press, May 2008, p. 531.

