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Abstract—Identifying risks relevant to a software project and
planning measures to deal with them are critical to the success
of the project. Current practices in risk assessment mostly rely
on high-level, generic guidance or the subjective judgements
of experts. In this paper, we propose a novel approach to
risk assessment using historical data associated with a software
project. Specifically, our approach identifies patterns of past
events that caused project delays, and uses this knowledge to
identify risks in the current state of the project. A set of risk
factors characterizing “risky” software tasks (in the form of
issues) were extracted from five open source projects: Apache,
Duraspace, JBoss, Moodle, and Spring. In addition, we performed
feature selection using a sparse logistic regression model to
select risk factors with good discriminative power. Based on
these risk factors, we built predictive models to predict if an
issue will cause a project delay. Our predictive models are able
to predict both the risk impact (i.e. the extend of the delay)
and the likelihood of a risk occurring. The evaluation results
demonstrate the effectiveness of our predictive models, achieving
on average 48%–81% precision, 23%–90% recall, 29%–71%
F-measure, and 70%–92% Area Under the ROC Curve. Our
predictive models also have low error rates: 0.39–0.75 for Macro-
averaged Mean Cost-Error and and 0.7–1.2 for Macro-averaged
Mean Absolute Error.

I. INTRODUCTION

Software projects tend to overrun cost and schedule. In fact,
a study [1] by McKinsey and the University of Oxford in 2012
of 5,400 large scale IT projects found that on average 66% of
IT projects were over budget and 33% went over the scheduled
time. In the well-known CHAOS report, Standish Group found
that 82% of software projects missed their schedules [2]. One
explanation for such overruns is that project managers do
not take prudent measures to assess and manage the risks.
Research has shown that risk management, which involves the
identification, assessment, and treatment of risks, is critical to
the success of IT projects [3].

Current practices in software risk management mostly rely
on high-level guidance (e.g. Boehm’s “top 10 list of software
risk items” [4] or SEI’s risk management framework [5])
and expert knowledge. While such guidance and frameworks
provide useful information, they are generic and making them
applicable to a particular project is typically not easy. On

the other hand, expert judgements provide assessment of risks
specific to a project, but they tend to be subjective.

Existing empirical work (e.g. [6–10]) has mostly considered
how risk management has supported decision makers and
project managers in identifying, analyzing and mitigating
risks. Such studies are useful in developing a retrospective
understanding of the relationships between risk factors and
how they affect project outcomes. However, it would be much
more valuable for project managers and decision makers to
be provided with insightful and actionable information about
the current existence of risks in their project at the fine-
grained level of tasks (issues1), allowing them to come up
with concrete measures to with these issues.

The work presented in this paper aims to address these
(latter) questions. We focus on a particular kind of risk that
adversely affects a scheduled release date – an important,
major milestone for a software project. Each release has a
planned date and an actual date, and is associated with a
number of issues that need to be resolved prior to release.
Releases are typically delayed because of their associated
issues not being resolved in time (i.e. before the release date).
Those issues that cause release delays are referred to in this
paper as delayed issues – as opposed to non-delayed issues
which are resolved in time.

We propose to analyze the historical data associated
with a project (i.e. past issue reports and develop-
ment/milestone/release plans) to predict whether a current
issue poses the risk of causing a delay. Our approach mines
the historical data associated with a project to extract past
instances of risks (i.e. delayed issues). An example of a risk
pattern is a software developer being overloaded with the
issues assigned to them, resulting in the risk that they may
not complete some of those tasks in time for a scheduled
release. This knowledge allows us to extract a set of features
(risk factors) characterizing “risky” issues, which are then used

1In modern software development (for both commercial and open software
development contexts), software tasks are often recorded in an issue/bug
tracking system (e.g. JIRA) in the form of new feature requests, bug reports,
documentation tasks, etc. Hereafter, we refer to all software tasks as issues
to reflect this practice.



to predict if an existing issue has a delay risk. Hence, our
approach addresses both risk identification and risk analysis,
which are arguably the most significant and challenging tasks
in the risk management process. Risk identification involves
determining risk that can, when present, adversely affect a
project. Risk analysis aims to identify the impact of a risk
and its probability of occurrence.

The paper presents two main contributions:

• Characterization of the issues that constitute a risk of
delay.
We extracted a comprehensive set of 16 risk factors
(discussion time, waiting time, issues type, number of
repetition tasks, percentage of delayed issues that a devel-
oper involved with, developer’s workload, issue priority,
number of comments, changing of priority, number of
fix version, number of affect version, number of issue
link, number of blocked issues, number of blocking
issues, changing of description, and reporter reputation)
from the 40,830 issues collected from five open source
projects: Apache, Duraspace, JBoss, Moodle, and Spring.
In addition, we performed feature selection using a sparse
logistic regression model to select risk factors with good
discriminative power for each project.

• Predictive models to predict which issues are a delay
risk.
We developed accurate models that can predict whether
an issue poses a risk of delaying a project milestone
(e.g. a release). Our predictive models are able to predict
both the impact (i.e. the degree of the delay) and the
likelihood of a risk occurring. For example, given an
issue X , our models are able to predict that there are
(e.g.) 30% chance of X not posing a risk (e.g. causing
no delay), (e.g.) 50% of being a minor risk (e.g. causing
minor delay), and (e.g.) 20% a major risk (e.g. major
delay). The performance of our predictive models were
evaluated on five different open source projects to ensure
that they can be generalized. We achieved 48%–81%
precision, 23%–90% recall, 29%–71% F-measure, 70%–
92% Area Under the ROC Curve, and low error rates:
0.39–0.75 for Macro-averaged Mean Cost-Error and 0.7–
1.2 for Macro-averaged Mean Absolute Error.

The remainder of this paper is organized as follows. Section
II presents a comprehensive set of risk factors that are poten-
tially associated with schedule overruns. Section III describes
how those risk factors are selected to develop our predictive
models (discussed in Section IV) . Section V reports the
experimental evaluations of our approach. Threats to validity
of our study are discussed in Section VI. Related work is
discussed in Section VII before we conclude and outline future
work in Section VIII.

II. RISK FACTOR IDENTIFICATION AND EXTRACTION

In this section, we describe how data was collected for our
study and the risk factors extracted from the data.

A. Data collecting and preprocessing

We collected the data (past issues) from five open source
projects: Apache, Duraspace, JBoss, Moodle, and Spring.
Apache is a web server originally designed for Unix environ-
ments. There are more than three hundred core members and
ten-thousand peripheral members contributing to the project
[11]. All issues in Apache were recorded in Apache’s issue
tracking system2. The Duraspace project3 supports the digital
asset management that contains several sub-projects in their
repository i.e. VIVO, Islandora, Hydra Hypatia, and Dura-
Cloud. There are about two-hundred contributors including
reporters, developers, testers, and reviewers working for the
Duraspace community. JBoss4 is an application server program
which supports the general enterprise software development
framework. The JBoss community has been developing more
two-hundred sub-projects with more than one-thousand con-
tributors. Moodle is an e-learning platform that allows ev-
eryone to join the community in several roles such as user,
developer, tester, and QA. The Moodle tracker5 is the Moodle’s
issue tracking system which is used to collect issues, working
items and keep track issues status in development activities.
Spring6 is an application development framework and it has
approximately one-hundred contributors. Those five projects
have different sizes, number of contributors, and development
processes.

All the five projects use JIRA7, a well-known issue and
project tracking software that allows teams to plan, collaborate,
monitor and organize issues. We used the Representational
State Transfer (REST) API provided by JIRA to query and
collected past issue reports in JavaScript Object Notation
(JSON) format. We collected both delayed and non-delayed
issues. For delayed issues, we also collected how many days
of delay the issues caused. For Duraspace, JBoss, Moodle
and Spring, delayed and non-delayed issues were identified
by comparing their due date and resolving date, e.g. delayed
issues were resolved after their due date. For Moodle, the
Moodle’s development life-cycle has a two-release plan: a
major release every 6 months, and a minor release every 2
months. The release versions were planned based on these
two milestones. We identified delayed issues by comparing a
planned release date with actual resolved date of issues.

TABLE I: Dataset description

Project Delayed
issues

Non-delayed
issues Total

Apache 111 [2.27%] 4,771 [97.72%] 4,882
Duraspace 314 [9.75%] 2,908 [90.25%] 3,222
JBoss 2,242 [15.08%] 12,627 [84.92%] 14,869
Moodle 214 [2.24%] 9,325 [97.75%] 9,539
Spring 80 [0.96%] 8,238 [99.03%] 8,318
Total 2,961 [7.25%] 37,869 [92.74%] 40,830

2https://issues.apache.org/jira/secure/Dashboard.jspa
3https://jira.duraspace.org/
4https://issues.jboss.org/secure/Dashboard.jspa
5https://tracker.moodle.org/secure/Dashboard.jspa
6https://spring.io/projects
7https://www.atlassian.com/software/jira



Table I shows the number of delayed issues and non-delayed
issues for each project. For Apache, 14,364 issues opened
from January 1, 2012 to December 16, 2014 were collected
from their issue tracking system. During the data preprocessing
phase, we removed issues with a status other than resolved or
closed. We also filtered out issues with empty field. Some
issues reported as a test case in QA tasks, which are not
related to a development task, were also filtered out. After the
preprocessing step, the number of issues was reduced to 4,882
issues consisting of 111 delayed issues (2.27%) and 4,771
non-delayed issues (97.7%). For Duraspace, the resolved or
closed issues between February 9, 2007 to August 18, 2014
were collected. For JBoss, Spring and Moodle, we retrieved
issues between January 4, 2004 to January 27, 2015. The
same preprocessing used for the Apache was applied for the
other four projects. In total, we collected 40,830 issues from
all the five projects, which consist of 2,961 (7.25%) delayed
and 37,869 (92.7%) non-delayed issues. We have made all the
data publicly available at http://www.uow.edu.au/∼mc650/.

B. Potential risk factors for software issues

One of our objectives is to characterize what risk factors
lead to an issue causing a project delay. These factors form
risk indicators (or features) which are then used to predict if an
issue will cause a delay. The time when the prediction is made
has implications to its accuracy and usefulness. The latter we
predict, the more accuracy we could gain (since more informa-
tion has become available) but the less useful it is (since the
outcome may become obvious or it is too late to change the
outcome). In this work, we assume prediction would be made
after an issue has been discussed and assigned to a developer,
and thus the risk factors we extracted are historically relevant
with respect to this prediction time. We however acknowledge
that further studies are needed to determine when it is a good
time to start predicting.

We initially extracted a broad range of risk factors related
to an issue causing a delay, and then used feature selection
techniques (see Section III) to remove weak and redundant
factors. We now describe each of those risk factors in detail.

1) Discussion time: A software project can be viewed
as a network of activities. Each activity is recorded as an
issue whose details can be described and tracked in an issue
tracking system. Hence, the time taken to complete a task
(i.e. resolve an issue) contributes to the overall schedule of
the project. More specifically, issues that take a significant,
unusual amount of time to resolve may lead to delays. Discus-
sion time is the period that a team spends on finding solutions
to solve an issue. For example, the delayed issue MDL-38314
in version 2.5 of the Moodle project had 92 days in discussion.

2) Waiting time: Waiting time indicates the time when an
issue is waiting for being acted upon, e.g. waiting for the
assigned developer(s) to take actions. Abnormal waiting time
is an indication of an issue being delayed due to lack of team
cooperation or nobody wanting to deal with the issue [12]. The
waiting time of an issue is from when an assignee has been

assigned to the issue, until they take an action to resolve it such
as changing the issue’s status or submitting a pull request.

3) Type: Each issue will be assigned a type (e.g. Task,
Bug, New feature, Improvement, and Documentation) which
indicates the nature of the task associated with resolving the
issue (e.g. fixing a bug or implementing a new feature). Hence,
we also consider issue type as a risk indicator. We note that the
issue types are defined specifically in each of the five selected
projects. For example, while there is no “Document” type for
issues in the Moodle project, this type exists in the issues of
JBoss and Duraspace.

4) Number of times that an issue is reopened: Previous
research (e.g. [13–15]) has shown that task repetitions (i.e.
repetitions in the life-cycle of an issue) are considered as a
degrading factor of the overall quality of software development
projects. It often leads to additional and unnecessary rework
that contributes to delays. An issue is reopened because of
several reasons, e.g. if the problem has not actually been
properly resolved, the issue needs to be reopened; or closed
issues must be reopened since there are some errors found in
the deployment phase after the issues were closed.

5) Priority: The issue’s priority presents the order in which
an issue should be attended with respect to other issues.
For example, issues with blocker priority should be more
concerned than issues with major or minor priority. Blocker
priority is an issue that blocking other issues to be completed.

6) Changing of priority: The changing of an issue’s priority
may indicate shift of its complexity. For example, Valdivia et
al. [16] use the changing of priority as a feature to predict
blocking bug. In our context, we are particularly interested
in the number of times an issue’s priority was changed and
considered it as a potential risk indicator.

7) Number of comments: Number of comments from de-
velopers during the discussion time may be indicative of the
degree of teams collaboration [17]. Panjer [18] reported that
a number of comments has an impact on the bug resolving
time: bugs with two to six comments tend to be resolved faster
than bugs with less than two comments and bugs with greater
than six comments. Note that we only consider the number of
comments posted before the end of the discussion time.

8) Number of fix versions: The “Fix Version” field on each
issue indicates the release version(s) for which the issue was
(or will be ) fixed. Issues with a high number of fix versions
need more attention in terms of developing, testing, and
integrating. An intensive reviewing process is also required
to validate that the resolving of an issue does not cause new
problems for each fix version.

9) Number of affect versions: The “Affect Version” field of
an issue specifies versions in which it has been found. One
issue can be found in many versions. For example, the issue
MDL-48942 in the Moodle project has been found in version
2.7.5 and 2.8.2. It was planed to be fixed for versions 2.7.6
and 2.8.4. The number of affected versions is a potential risk
indicator, e.g. more effort is needed to resolve an issue with
a high number of affected versions.



10) Number of issue links: Issue linking allows teams to
create an association between issues. For example, an issue
may duplicate another, or its resolution may depend on another
issues. There are several type of issue links (e.g. relates to,
duplicate, and block). We consider all relations of issue link
and use the number of those links as a risk indicator.

11) Number of issues that are blocked by this issue:
Blocker is one of the issue linking relation types. This risk
factor is the number of issues that are blocked by this issue.
This type of issue dependency indicates the complexity of
resolving issues since it directly affects the progress of other
issues. Thus, we deal with blocker relationship separately.

12) Number of issues that block this issue: This risk factor
is the number of other issues that are blocking this issue from
being completed. The resolving of high number of blocker
issues is more difficult since all blocker issues need to be fixed
beforehand. Thus, the number of blocker issues indicates the
time allocated to solve an issue [16].

13) Changing of description: The description of an issue
is important to all stakeholders of the issue. Changing the
description of an issue indicates that the issue is not stable
and may also create confusion and misunderstanding (and is
thus a delay risk). Hence, we consider the number of times in
which the issue’s description was changed as a risk factor.

14) Reporter reputation: Reporter reputation has been
studied in previous work in mining bug reports (e.g. [13,
19, 20]). For example, Zimmermann et. al. [13] found that
bugs reported by low reputation people are less likely to be
reopened. Hooimeijer et al. [20] used bug opener’s reputation
to predict whether a new bug report will receive immediate
attention or not. Bhattacharya et al. [19] studied bug fix time
prediction models using submitter’s reputations. In the context
of predicting delayed issues, reporter reputation could be one
of the risk factors because issue reporters with low reputation
may write poor issue reports, which may result in a longer
time to resolve the issue [14]. We use the reporter reputation
as defined based on Hooimeijer’s submitter reputation [20] as
follows:

reputation(D) =
|opened(D) ∩ fixed(D)|
|opened(D)|+ 1

The reputation of a reporter D is measured as the ratio of the
number of issues that D has opened and fixed to the number
of issues that D has opened plus one.

15) Developer’s workload: Developer workload is a reflec-
tion of the quality of resource planning, which is crucial for
project success. A lack of resource planning has implications
to project failures [21], and developer workload may have
significant impact on the progress of a project [12, 22]. A
developer’s workload is determined by the number of opened
issues that have been assigned to the developer at a time. A
developer’s workload is (re-)computed immediately after the
developer has been assigned an issue.

16) Percentage of delayed issues that a developer involved
with: Team members lack specialized skills required by the
project and inexperienced team members are amongst the

major threats to schedule overruns [23]. Teams that consist
of incompetent developers might be a cause of project delays
[12]. Boehm [4] also stated that personnel shortfalls are one of
the top-ten risks in software projects. On the other hand, recent
research has shown that the best developers often produce the
most bugs, since they often choose or were given the most
complex tasks [24]. This phenomenon might also hold for
delayed issues: best developers may get most/hardest issues
and thus they take the longest time to complete it. A developer
might have a large number of delayed issues because he/she is
an expert developer who is always tasked with difficult issues.

We characterize this risk factor as the percentage of delayed
issues in all of the issues which have been assigned to
a developer. This metric is computed at the time when a
developer has been assigned to solve an issue. For example,
from the JBoss project, issues JBDS-188 and JBDS-1067 were
assigned to the same developer but at different times. At
that time when JBDS-188 had been assigned, the developer
had 66% of delayed issues, while at a time of assigning the
developer to JBDS-1067, the developer had 48% of delayed
issues.

III. RISK FACTOR SELECTION

Sparse models – those with a small number of features – are
desirable since they are easier to interpret and acted upon by
model users. They are also critical to prevent over-fitting when
training data is limited compared to the number of possible
attributes. Hence, the second phase of our approach involves
selecting a compact subset of risk factors (described in Section
II) that provide a good predictive performance. This process
is known as feature selection in machine learning [25].

We developed a `1-penalized logistic regression model [26]
for selecting risk factors. A logistic regression model aims to
predict the probability of an event occurring (e.g. will this
issue cause a delay?) using a combination of factors that can
be numerical (e.g., the number of comments), or categorical
(e.g. issue type). The `1-penalized logistic regression model
was built on training data. Our factors were chosen from those
described in Section II. We built a model for the issues from
each project and a model for all of the issues we collected
across the five projects. We now describe this `1-penalized
logistic regression model in more detail.

Let
{

(xi, yi)
}n
i=1

be the training set, where x ∈ Rp be the
factor vector and y ∈ ±1 be the binary outcome i.e. y = 1 if
delay occurs and y = −1 if not. Let

f(x) = w0 +

p∑
j=1

wjxj

where wj is the factor weight (i.e. coefficient). We aim at
minimizing the following penalized log-loss with respect to
the weights:

L(w) =
1

n

n∑
i=1

log
(
1 + exp

(
−yif(xi)

))
+ λ

∑
j

|wj |

where λ > 0 is the penalty factor. The `1-penalty suppresses
weak, redundant and irrelevant factors by shrinking their



TABLE II: Descriptive `1-penalized logistic regression model for risk probability, trained on all issues collected from the five
projects

Feature Apache Duraspace JBoss Moodle Spring All Feature Apache Duraspace JBoss Moodle Spring All
discussion 1.027 -1.368 -3.153 -21.353 -0.371 -7.274 priority:Blocker 0.465 0.657 -0.322 -1.744 4.301 -0.827
waiting 0 0 0 -15.307 0 -4.495 priority:Critical -1.585 0 -0.45 -2.929 3.716 -0.903
type:Bug 0 -3.254 -0.959 -2.933 -4.763 -0.859 priority:Major 0.317 0 -0.453 -2.983 1.571 -0.921
type:Code Task N/A -0.052 N/A N/A N/A 0.216 priority:Minor 0 -0.663 -0.438 -2.801 1.778 -0.876
type:Documentation 0 0.359 1.617 N/A N/A 1.06 priority:Trivial -0.229 -1.548 -0.95 -2.639 0 -0.783
type:Epic 0 1.026 0 0 0 0.925 no comment 0 0.001 2.31 -1.43 -2.918 2.826
type:Improvement 0.044 -0.745 N/A -2.833 -4.704 0.271 no priority change -0.001 2.874 -0.234 1.684 1.325 1.166
type:New Feature 0.106 0.097 0 -3.011 -4.495 0.64 no fixversion change 3.042 0.152 2.081 -1.352 -0.088 2.529
type:Story 0 -0.81 0 0 0 -0.342 no affectversion -0.001 0 -0.903 -11.489 -0.822 -3.413
type:Sub-task -1.183 0.267 0.94 -2.796 0.001 0.867 no issuelink 0.001 0 0 -1.717 0.883 1.268
type:Task -0.37 -0.477 0.724 -2.604 -4.534 0.548 no blocking 0 0 -0.175 0.52 0 0.216
type:Technical task 0 0.35 0 0 0 0.567 no blockedby 0 -0.236 0.747 2.341 0 1.785
repetition -0.391 4.01 3.11 -0.427 6.358 2.878 no des change 0.001 0.955 0 1.251 0 1.472
perofdelay 3.183 4.202 3.088 2.569 22.091 3.361 reporter rep 1.355 -0.298 -0.712 2.53 1.623 -0.498
workload 0.179 -0.911 1.367 -1.104 0.241 1.621

dicussion=Discussion time, wating=Wating time, type=Issue’s type, repetition=Number of repetition tasks, perofdelay=Percentage of
delayed issues that a developer involved with, workload=Developer’s workload, priority=Issue’s priority, no comment=Number of

comments, no priority change=Changing of priority, no fixversion=Number of fix version, no affectversion=Number of affect version, no
issuelink=Number of issue link, no blocking=Number of issues that are blocked by this issue, no blockedby=Number of issues that block

this issue, no des change=Changing of description, reporter rep=Reporter reputation, N/A=This feature is not available.

weights toward zeros. It does so by creating competition
among factors to explain the outcome. In our experiments,
the penalty factor λ is estimated through cross-validation to
maximize the Area Under the ROC Curve (AUC). To ensure
weights are compatible in scale, we normalized features to the
range [0-1].

Table II shows all the risk factors and their weights in each
project as well as in all the projects together (last column
– using all issues collected across the five projects). The
weights have intuitive meanings – this is in fact one benefit
of logistic regression over other types of classifiers. The sign
of a weight is its direction of correlation with the chance
of an issue causing a delay. For example, in Apache the
weight of the discussion time is positive (1.027), indicating
that the discussion time is positively correlated with delayed
issues. By contrast, the weight of the discussion time in
the other four projects is negative (e.g. –3.153 in JBoss),
meaning the discussion time being negatively correlated with
delayed issues. This diversity can also be observed in other
risk factors (except the “percentage of delayed issues that a
developer involved with” factor which is positively correlated
with delayed issues in all the five projects). We also note
that the magnitude of each weight approximately indicates the
degree to which a factor affects the probability of an issue
causing delays [27]. Note that the exponential of a weight is
an odds-ratio which is a measure of association between the
presence of a risk factor and a delay. The odds-ratio represents
the odds that a delay will occur given the presence of risk
factor, compared to the odds of the delay occurring in the
absence of that risk factor. An odds is the ratio of the delay
probability and the non-delay probability. This allows us to
see relative strength of risk factors.

In our study, we select risk factors with non-zeros weight,
i.e. we excluded factors that have no (either positive or
negative) correlation with delayed issues. For example, dis-
cussion time, improvement type, number of repetition tasks
and reporter reputation are among the risk factors we selected

for the Apache project. Note that we selected different sets of
risk factors for different projects due to the project diversity.
The selected factors were then used to build a predictive model
which we describe in the next section.

IV. PREDICTIVE MODELS

Our predictive models are able to predict not only if an
issue will cause a delay but also the degree of delay (in terms
of the number of days overrun). To do so, we employ multi-
class classification where the risk classes reflect the degree of
delay. Since the number of delayed issues in our data set is
small (compared to the number of non-delayed issues – see
Table I), we choose to use two risk classes: major delayed and
minor delayed (and the non-delayed class). During the training
phase for our dataset, we use a threshold to determine which
risk class an issue belongs to. The threshold was chosen such
that it gives a good balance between the two risk classes.

For each of our case study projects, the risk factors that
we selected are used to train five classifiers: Random Forests,
Neural Networks, Decision Tree, Naive Bayes, and NBTree.
We briefly describe each classifier as follows.

• Random Forests (RF) - RF is a significant improve-
ments of decision tree approach by generating many
classification trees, each of which is built with random
subset of variables at each node split, and aggregates
into the individual results with a higher concentration of a
particular class [28]. Previous research [29, 30] has shown
that RF is an outstanding modeling technique.

• Neural Networks (aNN) - aNN is a model of feedforward
recognition mimicking biological neurons and synapses.
Its provides nonlinear function approximation that maps
an input vector into an output. aNN is widely used in
pattern recognition because of their flexibility as an uni-
versal function approximator and powerful generalization.
In software engineering, there has been work applying
aNNs (e.g.,[31–33]) which yield good results.

• Decision Tree (C4.5) - C4.5 is a decision tree algorithm
that generates decision nodes based on the information



gain using the value of each factors [34]. The significant
benefit of decision tree classifier is that it offers an ex-
plainable model. Thus, most of the work that focuses on
interpreting models (e.g.,[35, 36]) selected this technique.

• Naive Bayes (NB) - NB is based on the assumption that
risk factors, when the outcome is known, are condition-
ally independent. Despite of this naive assumption, NB
has been found to be effective as a classifier. The main
reason for using NB is to obtain the probability that a
issue will be delayed as we need to determine a likelihood
of the risk. Thus, studies that aim to measure the degree
of uncertainty naturally applies NB to build models (e.g.,
[37, 38]).

• NBTree - NBtree is a hybrid algorithm between Naive
Bayes classifier and C4.5 Decision Tree classification.
The decision tree nodes contain univariate splits as regu-
lar decision trees, but the leaf nodes accommodate with
Naive Bayes classifiers [39].

Our predictive models are also able to provide the likelihood
of a risk occurring, i.e. the chance of an issue causing no delay,
minor delay and major delay. In the following subsection, we
will describe this important aspect of our predictive models.

A. Predicting the likelihood of a risk occurring

Our objective is not only predicting risk classes but also
estimating the class probabilities. Of the five classifiers stud-
ied, Naive Bayes and Neural Networks naturally offer class
probability. However, without appropriate smoothing, prob-
ability estimates from those two methods can be unreliable
for small classes. Naive Bayes, for example, often push the
probability toward one or zero due to its unrealistic assumption
of conditional independence among risk factors. Decision-tree
classifiers such as C4.5 and NBTree also generate probabilities
which are class frequency assigned to the leave in the training
data. However, these estimates are not accurate since leave-
based probabilities tend to be pushed towards zero and one.
In general, Naive Bayes, Neural networks and decision-tree
methods require careful calibration to obtain class probabilities
[40]. Random Forests, on the hand, rely on voting of trees, thus
the probabilities can be estimated by proportions of votes for
each class. With a sufficient number of trees, the estimates
can be reliable. The process of probability calibration for all
classifiers are discussed as follows.

1) Estimating probability in Random Forests: A Random
Forests algorithm will generate many trees from random
sampling of features and data instances. The predicted class is
the class that hold the highest score in voting (the number of
trees predicting that class) [28]. For example, in our context,
assume that there are 100 trees generated from the data. An
issue is predicted as major delayed because there are 60 trees
that predict so, while only 30 and 10 trees predict minor
delayed and non-delayed respectively. Thus, the voting result
can be treat as the probability distribution, which means, the
probability of the issue to be major delayed is 60%, 30% for
minor delayed, and 10% for non-delayed.

2) Neural Network classifiers with posteriori probabilities:
In order to convert Neural Networks’ output to probabil-
ities, aNN classifiers typically provide outputs which esti-
mate Bayesian posteriori probabilities. When the estimation
is accurate, aNN outputs can be treated as probabilities and
the sum of probability distribution is equal to 1 [41, 42]. It
means that the weighted outputs that are generated from the
networks can be treated as a class probability. For example,
in our context, when we construct the Neural Networks,
it must consist of three output nodes in the output layer
to represent three predicting classes (major delayed, minor
delayed, and non-delayed). An output node calculates the sum
of weighted features that is calculated from the hidden layer.
Thus, the results from the thee output nodes are the probability
distribution of each class.

3) Probabilistic decision trees: The decision tree proba-
bilities naturally come from the frequencies at the leaves.
Generally, the probability using frequency-based estimate at
a decision tree leaf for a class y is:

P (y|x) =
tp

(tp+ fp)

Where tp is true-positive of class y, and fp is false-positive
of class y [43].

For example, assume that y is the major delayed class. The
probability of the issue X to be major delayed is the fraction
between tp and tp+ fp of the major delayed class, where tp
is the number of issues that are classified as major delayed
and they are truly major delayed, and fp is the number of
issues that are classified as major delayed when they are not
major delayed.

4) Naive Bayes: Typically, Naive Bayes is a probability
classifier model. Thus, we followed Bayes’s theorem to deter-
mine a class probability. Given a class variable y (i.e., major,
minor, and non delayed risk) and a dependent feature vector
x1 through xn which are our risk factors in Section II, the
probability of class y is:

P (y|x1, ..., xn) =
P (y)(P (x1, ..., xn|y)

P (x1, ..., xn)

Then, the instances are classified using Bayes’s decision rule
[44].

5) Combining decision tree and Naive Bayes: As men-
tioned earlier, NBTree is a hybrid of decision tree (C4.5)
and Naive Bayes. The decision tree consists of the root, the
splitting, and the leave node. The root node denotes the starting
point of the classification. The splitting is condition to separate
data into two clusters. The leave nodes give the final results
of the classification. At the leave nodes, NBTree uses the
information on the frequency of classified instances to estimate
probability using Naive Bayes. For example, at one leave node
in the decision tree, the probability distribution of each class is
determined using Naive Bayes on the population that classified
to that node [45].



B. Risk exposure prediction

Our predictive models are able to predict the exposure of
a risk. Risk exposure is defined as the probability of a risk
occurring times the loss if that risk occurs [46]. Risk exposure
supports project managers to establish risk priorities [4]. Our
predicted risk exposure R̄E is computed as follows.

For an issue i, let C1, C2 and C3 be the costs associated
with the issue causing no delay, minor delay and major delay
respectively. Note that C1 is generally 0 – no delay means no
cost. The predicted risk exposure for issue i is:

R̄Ei = C1P (i,Non) + C2P (i,Min) + C3P (i,Maj)

where P (i,Non), P (i,Min), and P (i,Maj) are the prob-
abilities of issue i being classified in non-delayed, minor
delayed, and major delayed classes respectively.

Note that all the costs, C1, C2 and C3, are user defined
and specific to a project. For example, assume that C1 = 0,
C2 = 1, and C3 = 2, and there is 30% chance that an issue
causing no delay (i.e. P (i,Non) = 0.3), 40% chance causing
minor delay (i.e. P (i,Min) = 0.4), and 30% major delay (i.e.
P (i,Maj) = 0.3), then the predicted risk exposure R̄Ei of
the issue is 1.

V. EVALUATION

This section describes our experimental setting, the perfor-
mance measures and the results.

A. Experimental setting

All issues collected in each of the five case studies (see
Section II-A) were divided into a training set and a test set.
The issues in training set are those that were opened before
the issues in test set. This setting was to try mimic a real
deployment scenario that prediction on a current issue is made
using knowledge from the past issues. We could also follow
a sliding window setting: first, the issue reports are sorted
based on the time they are resolved; next, we divide the issue
reports into multiple sliding windows, and for each sliding
window, we use data from the previous sliding windows to
train a model. This would allow us to investigate several
different training and test sets per project, which we leave for
future work since we believe that our findings in the current
experimental setting still hold.

TABLE III: Experimental setting

Training set TestsetProject Major Minor Non Major Minor Non
Apache 15 66 340 2 28 105
Duraspace 39 118 2,805 15 55 500
JBoss 998 795 8,965 112 337 1,794
Moodle 80 89 791 18 27 195
Spring 11 39 350 12 18 120
All together 1,143 1,107 13,251 159 465 2,714

(“All together” is an integration of issues from all the five projects.)

Table III shows the number of issues in training set and test
set for each project. Since (major/minor) delayed issues are
rare (only 7% of all collected issues), we had to be careful in

creating the training and test sets. Specifically, we placed 80%
of the delayed issues into the training set and the remaining
20% into the test set. In addition, we tried to maintain a similar
ratio between delayed and non-delayed issues in both test set
and training set, i.e. stratified sampling.

B. Performance Measure

As our risk classes are ordinal and imbalanced, standard
report of precision/recall for all classes is not fully appli-
cable. In addition, no-delays are the default and they are
not of interest to risk management. Reporting the average
of precision/recall across classes is likely to overestimate the
true performance. Furthermore, class-based measures ignore
the ordering between classes, i.e., major-risk class is more
important than minor-risk. Hence, we used a number of pre-
dictive performance measures suitable for ordinal risk classes
for evaluation described as below.

1) Precision/Recall/F-measures/AUC: A confusion matrix
is used to evaluate the performance of our predictive models.
As a confusion matrix does not deal with a multi-class proba-
bilistic classification, we reduce the classified issues into two
binary classes: delayed and non-delayed using the following
rule:

Ci =

{
delayed, ifP (i,Maj) + P (i,Min) > P (i,Non)

non− delayed, otherwise

where Ci is the binary classification of issue i, and
P (i,Maj), P (i,Min), and P (i,Non) are the probabilities of
issue i classified in the major delayed, minor delayed, and non-
delayed classes respectively. Basically, this rule determines
that an issue is considered as delayed if the sum probability
of it being classified into the major and minor delayed classes
are greater than the probability of it being classified into the
non-delayed class.

The confusion matrix is then used to store the correct and
incorrect decisions made by a classifier. For example, if an
issue is classified as delayed when it truly caused a delay,
the the classification is a true positive (tp). If the issue is
classified as delayed when actually it did not cause a delay,
then the classification is a false positive (fp). If the issue is
classified as non-delayed when it in fact caused a delay, then
the classification is a false negative (fn). Finally, if the issue
is classified as non-delayed and it in fact did not cause a
delay, then the classification is true negative (tn). The values
stored in the confusion matrix are used to compute the widely-
used Precision, Recall, and F-meature for the delayed issues
to evaluate the performance of the predictive models:

• Precision: The ratio of correctly predicted delayed issue
over all the issues predicted as delayed issue. It is
calculated as

pr =
tp

tp+ fp

• Recall: The ratio of correctly predicted delayed issue over
all of the actually issue delay. It is calculated as

re =
tp

tp+ fn



• F-measure: Measures the weighted harmonic mean of the
precision and recall. It is calculated as

F −measure =
2 ∗ pr ∗ re
pr + re

• Area Under the ROC Curve (AUC) is used to evaluate
the degree of discrimination achieved by the model.
The value of AUC is ranged from 0 to 1 and random
prediction has AUC of 0.5. The advantage of AUC is
that it is insensitive to decision threshold like precision
and recall. The higher AUC indicates a better predictor.

2) Macro-averaged Mean Cost-Error (MMCE): The con-
fusion matrix however does not take into account our multi-
class probabilistic classifications and the cost associated with
each risk class. Hence, we propose a new measure known
as Macro-averaged Mean Cost-Error (MMCE) to assess how
close our predictive risk exposure is to the true risk exposure
(the distance between them in the sense that the smaller the
better).

Let yi be the true class and ŷi be the predicted class of
issue i. Let nk be the number of true cases with class k where
k ∈ {1, 2, 3} – there are 3 classes in our classification – i.e.,
nk =

∑n
i=1 δ

[
yi = k

]
and n = n1 + n2 + n3. Here δ [.] is

the indicator function.
The Macro-averaged Mean Cost-Error8 is defined as below:

MMCE =
1

3

3∑
k=1

1

nk

n∑
i=1

∣∣R̄Ei − C
∣∣ δ [yi = k

]
where R̄E is the predicted risk exposure computed in Section
IV-B and C is the actual risk exposure. The normalization
against the class size makes MMCE insensitive to the class
imbalance.

For example, an issue is predicted to be 50% in major
delayed, 30% in minor delayed, and 20% in non-delayed.
Assume that the issue actually caused a minor delay (i.e. the
true class is minor delayed) and the costs C1 (no delay), C2

(minor delay), and C3 (major delay) are respectively 0, 1,
and 2. The predicted risk exposure R̄E is 1.3 and the actual
risk exposure is 1 (see Section IV-B for how a risk exposure
is calculated). Hence, the MMCE error between actual and
predicted risk exposure for this issue is 0.3.

3) Macro-averaged Mean Absolute Error (MMAE): We
also used another metric called Macro-averaged Mean Abso-
lute Error (MMAE) [47] to assess the distance between actual
and predicted classes. MMAE is suitable for ordered classes
like those defined in this paper. For example, if the actual
class is non-delayed (k = 1), and the predicted class is major
delayed (k = 3), then an error of 2 has occurred. Here, we
assume that the predicted class is the one with the highest
probability, but we acknowledge that other strategies can be
used in practice. Again the normalization against the class size
handles the class imbalance.

8Here we deal with only 3 classes but the formula can be easily generalized
to n classes.

Macro-averaged Mean Absolute Error:

MMAE =
1

3

3∑
k=1

1

nk

n∑
i=1

∣∣ŷi − k∣∣ δ [yi = k
]

For example, an issue is predicted to be 10% in major
delayed, 60% in minor delayed, and 30% in non-delayed.
Thus, the predicted class of this issue is minor delayed (k
= 2). Assume that the actual class of the issue is non-delayed
(k = 1), then the distance between actual and predicted classes
of this issue is 1.

C. Results

Comparison of different classifiers: Figure 1 shows the
precision, recall, F-measure, MMCE, and MMAE achieved
by Random Forests, Neural Network, Decision Tree (C4.5),
Naive Bayes, and NBTree for the collected issues in each of
the five open source projects and in all the projects (shown
by “All” legend). As can be seen in Figure 1(a.), Random
Forests achieve the highest precision of 0.9 (averaging across
five projects), while the other classifiers achieve only 0.4–0.6
precision. Random Forests also outperform the other classifiers
in terms of recall and F-measure: it achieves the highest recall
of 0.7 and the highest F-measure of 0.8 (averaging across five
projects). It should however be noted that Naive Bayes and
Decision outperform Random Forests in terms of F-measure
for the Spring project. Random Forests also achieve the lowest
risk exposure prediction errors with only 0.34 for MMAE and
0.41 for MMCE, while the other classifiers give 1.05–1.15
MMAE and 0.64–0.7 MMCE.

The degree of discrimination achieved by our predictive
models is also high, as reflected in the AUC results. The AUC
quantifies the overall ability of the discrimination between the
delayed and non-delayed classes. As can be seen in Figure
1(d.), the average of AUC across all classifiers and across
all project is 0.81. All classifiers achieve more than 0.6 AUC
while Random Forests is also the best performer in this aspect
with 0.93 AUC.

Overall, the evaluation results demonstrate the effectiveness
of our predictive models, achieving on average 48%–81%
precision, 23%–90% recall, 29%–71% F-measure, and 70%–
92% Area Under the ROC Curve. Our predictive models also
have low error rates: 0.39–0.75 for Macro-averaged Mean
Cost-Error and and 0.7–1.2 for Macro-averaged Mean Ab-
solute Error. Although Random Forests consistently perform
well across different measures, this classifier does not provide
easily explainable models. Easy-to-understand models such as
decision trees tend to be more preferable for practitioners [16].

The variety of project nature: The predictive perfor-
mance of the five classifiers vary from projects to projects.
For example, from the F-measure report (Figure 1 (c.)), the
predictive performance of all classifiers for the JBoss project
is worst than that for the other projects. This demonstrate the
diversity of open source projects in nature. For projects that
our predictive models struggled, there might be some changes
in the project (e.g. additional contributors joined in) between



Fig. 1: Evaluation results
(Precision/Recall/F-measure/AUC, the higher the better. The MMAE/MMCE, the lower the better.)

the training time and test time, and thus patterns present at
training time may not entirely repeat later on at test time.

MMAE and MMCE as performance measures: MMAE
and MMCE are used to assess the performance of our models
in terms of predicting risk exposure. The evaluation results
show that MMAE and MMCE are generally consistent with
the other measures. For example, Random Forests have the
highest precision and recall, and the lowest MMAE and
MMCE.

What did we learn from the risk factor weights: Out-
comes from the risk factor selection process (see Section III –
Table II) help us identify the best factors for predicting delayed
issues. Although the risk factors and the degree to which they
affect the probability of an issue causing delay are different
from projects, we have also seen some common patterns, e.g.
“the percentage of delayed issues that a developer involved
with” is a positive factor across all the five projects. In a
term of discrimination power of the risk factors, the top three
highest discrimination power factors are: the percentage of
delayed issues that a developer involved with, discussion time,
and the number of times that issue is reopened. In addition, the
issue’s type that is consistently indicative of delays is “Docu-
mentation”, which might reflect that this type of issue does not
have enough attention in open source projects. Furthermore,
the “Trivial” priority has less impact on causing a delay, while
the “Blocker” priority has stronger impact (particularly for the
Spring project). These would provide insightful and actionable
information for project managers in risk management.

VI. THREATS TO VALIDITY

Internal validity: Our data set has the class imbalance
problem. The majority of issues (over 90% of the total data)
are non-delayed issues. This has implications to a classifier’s
ability to learn to identify delayed issues. We have used
stratified sampling to mitigate this problem. We also designed
and used two performance measures that are insensitive to
class imbalance: the MMCE and MMAE. In addition, clas-
sifiers generally make a certain assumptions about the data,
e.g. Naive Bayes assumes that the factors are conditionally
independent (which may not be true in our context,) or
the other classifiers generally assume that training data is
sufficiently large. We have used a range of different classi-
fiers, and performed feature selection to minimize this threat.
Feature selection reduces the feature space, limits the chance
of variations, and thus requires less data to learn patterns
out of features. Especially, our feature selection is based
on maximizing predictive performance in held-out data, and
consequently it helps deal with overfitting and overoptimistic
estimation.

Another threat to our study is that the patterns that hold in
the train data may not reflect the situation in the test. There are
a number of reasons for this such as the team and management
having changed their approach or managed the risks they
perceived. We deliberately chose the time to split training and
test sets to mimic a real deployment (as opposed to traditional
settings where data is split randomly). The sliding approach
discussed in Section V-A would also minimize this threat. We
have attempted to cover most important risk factors related to



an issue causing a project delay. However, we acknowledge
that the set of risk factors identified in this paper are by no
means comprehensive to encompass all aspects of software
projects.

External validity: We have considered more than 40,000
issue reports from the five projects which differ significantly
in size, complexity, development process, and the size of
community. All issue reports are real data that were generated
from open source project setting. We cannot claim that our data
set would be representative of all kinds of software projects,
especially in commercial settings. The primary distinct be-
tween open source project and commercial projects is the
nature of contributors, developers and project’s stakeholders.
In open source projects, contributors are free to join and
leave the communities, resulting in high turn over rate [48].
In contrast, developers in the commercial setting tend to be
stable and fully commit to deliver the project’s progress.
Hence, further study of how our predictive models perform
for commercial projects is needed.

VII. RELATED WORK

Software risk management has attracted great attention since
Boehm’s seminal work (e.g. [4, 46]) in the early nineties. Risk
management consists of two main activities: risk assessment
and risk control. Our current work focuses on risk assess-
ment, which is a process of identifying risks, analyzing and
evaluating their potential effects in order to prioritize them [4,
49]. Risk control aims to develop, engage, and monitor risk
mitigation plans.

Statistical and machine learning techniques have been used
in different aspects of risk management. For example, Letier
et al. [50] proposed a statistical decision analysis approach
to provide a statistical support on complex requirements and
architecture. Their model merges requirements and constraints
from various decision options to determine cost and benefit
and to reduce uncertainty in architecture decisions. Pika et
al. [12] used statistical outlier detection techniques to analyze
event logs in order to predict process delay using a number of
process risk indicators such as execution time, waiting time,
and resource involvement. Bayesian networks have also been
used to model dependencies and probabilistic relationships
between causes and effects in risk analysis. For example, the
work in [8] developed a Bayesian network to analyze causality
constraints and eliminate the ambiguity between correlation
and causality of risk factors. However, the input data of this
model is the questionnaire-based analysis, which may not
reflect the current situation of projects.

Another line of research that is closely related to our work
is mining bug reports for fix-time prediction (e.g. [18, 19,
51–53]), blocking bug prediction (e.g. [16]), re-opened bug
prediction (e.g. [13, 15]), severity/priority prediction (e.g. [54,
55]), delays in the integration of a resolved issue to a release
(e.g. [56]), bug triaging (e.g. [57–60]), and duplicate bug
detection ([61–65]). Particularly, the thread of research on
predicting the fix time of a bug is mostly related to our work,
and thus we briefly discuss some of those recent work here.

The work in [51] estimates the fixing effort of a bug by finding
the previous bugs that have similar description to the given
bug (using text similar techniques) and using the known effort
of fixing those previous bugs. The work in [18] used several
primitive features of a bug (e.g. severity, component, number
of comments, etc.) to predict the lifetime of Eclipse bugs
using decision trees and other machine learning techniques.
Recently, the work in [53] proposed to use Random Forrest
to predict bug’s fixing time using three features: location,
reporter and description. The work in [52] also computed
prediction models (using decision trees) for predicting bug’s
fixing time. They tested the models with initial bug report data
as well as those with post-submission information and found
that inclusion of post-submission bug report data of up to
one month can further improve prediction models. Since those
techniques used classifiers which do not deal with continuous
response variable, they need to discretize the fix-time into
categories (e.g. within 1 month, 1 year and more than 1 year
as in [53]). Hence, they are not able to predict the exact time
needed to resolve an issue, and thus are not readily applicable
to predict if an issue will cause a delay. Our future work would
involve investigating how to extend those techniques for delay
prediction and compare them with our approach.

VIII. CONCLUSIONS AND FUTURE WORK

Schedule overruns are common and one of the major
problems in software projects. Thus, there is increasing need
for project managers and decision makers to identify risks
causing project delays early. In this paper, we have performed
a study in five major open source projects and extracted a
comprehensive set of risk factors that are related to the issues
(software tasks) in those projects. We have developed a sparse
logistic regression model and performed feature selection on
those risk factors to choose those with good discriminative
power. Using those selected risk factors, we have developed
accurate models to predict if an issue will cause a delay, if so to
what extend the delay will be (risk impact), and the likelihood
of the risk occurring. The evaluation results demonstrate a
strong predictive performance of our predictive models.

Our future work would involve expanding our study to
other large open source projects and commercial software
projects to further assess our predictive models. We also
plan to explore additional risk factors such as the discussions
between developers and project leaders. Performing additional
experiments with different training and test sets (using the
sliding window approach) is also part of our future work.
Since there are interdependencies between risk in practice (e.g.
one risk can trigger another), an important part of our future
work is to develop a model (e.g. using Bayesian network) to
represent dependencies and probabilistic relationships between
causes and effects of the risk factors we identified here. Risk
assessment which has been addressed in this paper is just only
the first part of the solution. The next task is providing various
actionable recommendations such as which risks should be
deal with first, and which measures could be used to mitigate
them.
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